Generalized special Lagrangian torus fibration for Calabi-Yau hypersurfaces in toric varieties II

نویسنده

  • Wei-Dong Ruan
چکیده

Let (P∆, ω) be a toric variety whose moment map image (with respect to the toric Kähler form ω) is the real convex polyhedron ∆ ⊂ MR. Also assume that the anti-canonical class of P∆ is represented by an integral reflexive convex polyhedron ∆0 ⊂ M and the unique interior point of ∆0 is the origin of M . Integral points m ∈ ∆0 correspond to holomorphic toric sections sm of the anticanonical bundle. For the unique interior point mo of ∆0, smo is the section of the anti-canonical bundle that vanishes to order 1 along each toric divisor of P∆.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized special Lagrangian torus fibration for Calabi-Yau hypersurfaces in toric varieties I

In this paper we start the program of constructing generalized special Lagrangian torus fibrations for Calabi-Yau hypersurfaces in toric variety near the large complex limit, with respect to the restriction of a toric metric on the toric variety to the Calabi-Yau hypersurface. The construction is based on the deformation of the standard toric generalized special Lagrangian torus fibration of th...

متن کامل

Integral Affine Structures on Spheres Duke-cgtp-02-05 and Torus Fibrations of Calabi-yau Toric Hypersurfaces I

We describe in purely combinatorial terms dual pairs of integral affine structures on spheres which come from the conjectural metric collapse of mirror families of Calabi-Yau toric hypersurfaces. The same structures arise on the base of a special Lagrangian torus fibration in the Strominger-Yau-Zaslow conjecture. We study the topological torus fibration in the large complex structure limit and ...

متن کامل

S ep 1 99 9 Topological Mirror Symmetry

The Strominger-Yau-Zaslow conjecture proposes that mirror symmetry can be explained by the existence, in a mirror pair of Calabi-Yau manifolds, of dual special La-grangian T n-fibrations. (See [18,8,6,7] for further clarification of this conjecture.) Recently, Zharkov in [20] proved that non-singular Calabi-Yau hypersurfaces in toric varieties have topological T n-fibrations, and Ruan in [17] h...

متن کامل

Torus Fibrations of Calabi-yau Hypersurfaces in Toric Varieties

1. Introduction. Strominger, Yau, and Zaslow [SYZ] conjectured that any Calabi-Yau manifold X having a mirror partner X ∨ should admit a special Lagrangian fi-bration π : X → B. (A mathematical account of their construction can be found in [M].) If so, the mirror manifold X ∨ is obtained by finding some suitable compactifi-cation of the moduli space of flat U(1)-bundles along the nonsingular fi...

متن کامل

Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry

We consider regular Calabi-Yau hypersurfaces in N -dimensional smooth toric varieties. On such a hypersurface in the neighborhood of the large complex structure limit point we construct a fibration over a sphere S whose generic fibers are tori T. Also for certain one-parameter families of such hypersurfaces we show that the monodromy transformation is induced by a translation of the T fibration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003